大数据进化可视化移动分析技术成热点

2014年是大数据之盛年。在这一年,这个术语风行科技界,被越来越多的人所熟悉。而在2015年,我相信“大数据”将与“物联网”一起成为互联网和移动互联网的核心话题。

越来越多的公司将受益于对大数据的深入分析,而这更将成为科技企业的标准化流程之一。

未来几年内,全球移动互联网用户将持续增长,至2016年,61%互联网流量将来自无线设备,进一步推动大数据的成长。

大数据催生的挑战

据IDC数据显示,在2015年,大数据市场规模将从2010年的32亿美元增长至169亿美元。2013-2014年,人类行为产生的数据量超过过去多年的总和,且受物联网推动,未来将继续以翻倍的速度增长。

很显然,数据分析师们无法应对统计信息和数据的大量涌入,而机器(分析)的弊端则在于,它无法提炼数据的真正价值,推导出具有逻辑性的结论。如果企业无法解析成堆数据,数据就成了无用之物——搜集到的所有信息如同进入休眠状态,不可能对企业产生积极影响。

因此,我们面临的挑战是:如何让所有信息变得有意义。

变革分析数据的方式

技术人员、统计人员和企业……大家都在谈论这个问题,却很少有人提出解决方案。

某些公司尝试打造软件解决方案,虽然表面上软件分析能够解决问题,但一旦数据量突然激增,这种模式将失效。企业成长依赖于数据,但处理数据对人类来说任务过于繁重,交给机器处理却又有可能无法实现其最大价值。

真正的变革,在于改变数据分析的流程。CrazyEgg和Inspectlet等公司已经在互联网端提供可视化数据分析解决方案,但有鉴于移动互联网流量已经超过互联网,数据分析的未来将系于可视化移动分析。

传统的移动分析工具,例如Google Analytics强调数据的内容,提供用户数量、所使用操作系统,用户地理位置分布等关键指标,但它们却不关注“为什么”,而后者本应是数据分析的原因所在。

举个例子来说,较低用户留存率乃一目了然的简单数据,但我们并不清楚的是,为什么用户不愿意重返一款移动应用?目前,已经有可视化移动分析工具能够绘制可视化报告,让开发者能够深入观察用户体验和行为,从而发现问题所在。而下一代可视化移动分析工具,则不单有能力动见问题,还能够为开发者提供可执行的解决方案。

如果企业希望寻找一种方式,简化耗时的数据分析流程,以达到优化应用的目标,不妨考虑借助可视化移动分析工具的力量。

Leave Comment

您的电子邮箱地址不会被公开。 必填项已用*标注